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Abstract. Explicit expressions describing the semi-diurnal variation of cosmic ray intensity 
are obtained in the frame of the convection-diffusion theory. Convection-diflusion equations 
are extended by introducing a symmetric traceless tensor accounting for the second harmonics 
of the cosmic ray angular distribution. Starting from the statistical Boltzmann equation a 
new transport equation is deduced which relates the second harmonics of the angular 
distribution to  the gradients of cosmic ray streaming. Thus, compared to  models used 
hitherto, a more quantitative calculation is carried out. Expressing the free space anisotropy 
in terms of geographical coordinates, the predicted diurnal and semi-diurnal variations are 
given. The results obtained are essentially in agreement with those of Quenby and Lietti 
but also differences arise as  a result of the bending and divergence of the large-scale inter- 
planetary magnetic field lines. Arguments are brought forward that a sunward cosmic ray 
streaming along the interplanetary field lines gives rise to a pitch angle distribution with 
an excess of particles of large pitch angles. 

1. Introduction 

Having entered the solar system, the Galactic cosmic radiation is subject to solar 
modulation which reduces its intensity and changes its angular distribution by intro- 
ducing a solar-bound anisotropy as well. Due to the rotation of the earth the anisotropic 
directional distribution manifests itself in diurnal, semi-diurnal, etc cosmic ray intensity 
variations. Among these, the first daily harmonic has a satisfactory explanation in the 
convection-diffusion theory developed by Parker (1964) and Gleeson and Axford (1967). 
The semi-diurnal variation, however, is caused by the second and higher harmoriics of 
the free space cosmic ray distribution ; thus, in contrast to the first daily harmonic, it 
cannot be treated by convection-diffusion equations involving particle density and 
current density only (the latter corresponding to the first harmonic of the cosmic ray 
distribution). 

Using different approaches, several authors (Quenby and Lietti 1968, Subramanian 
and Sarabhai 1967) have pointed out that the semi-diurnal variation arises as a result 
of the change of the cosmic ray density gradient, ie as a result of the second space deriva- 
tive of cosmic ray density. Spiralling around the interplanetary magnetic field lines, 
particles perfarm several turns until being scattered. Thus the flux of particles arriving at 
the earth from a specific direction reflects cosmic ray density at the guiding centre of 
particle trajectory belonging to the given direction. Provided that the cosmic ray 
density is higher both above and below the ecliptic plane than in the plane itself, ie a 
nonzero second derivative of cosmic ray density exists (which is sometimes referred to as 
the bi-directional gradient), a semi-diurnal variation of cosmic ray intensity results with 
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intensity maxima at  about 3 and 15 h local time corresponding to the directions lying 
in the ecliptic plane perpendicularly to the interplanetary magnetic field lines. With 
increasing rigidity particles get farther from the ecliptic plane, giving rise to an increasing 
semi-diurnal wave. 

In the present work the semi-diurnal variation is derived in terms of the convection- 
diffusion model. In order to achieve this, convection-diffusion theory will be extended 
to include the second harmonics of the cosmic ray angular distribution too. Starting 
from the statistical Boltzmann equation, an additional transport equation will be 
obtained which brings the second harmonics of the distribution into relation with the 
cosmic ray stream, suggesting that second harmonics are generated by the gradients of 
the stream. Different components of cosmic ray streams will be considered to generate 
second harmonics in this indirect way. Finally, expressing the free space anisotropy 
in terms of geographical coordinates, explicit expressions of the resulting diurnal and 
semi-diurnal variations will be given. 

2. General equations 

In its usual form the convection-diffusion theory considers the cosmic ray density and 
net particle flux. The latter, being a vector, is responsible for the anisotropy and results 
in a sinusoidal daily wave. However, it cannot give rise to semi-diurnal variation which 
is produced by the second (and higher) moments of the cosmic ray distribution. In 
this section we introduce a symmetric traceless tensor accounting for the second 
harmonics of the cosmic ray distribution and establish a new transport equation. It 
will be found that, as expected, the convection-diffusion equations remain virtually 
unaltered, their change due to the newly introduced tensor being negligible at least in 
cases where the angular distribution is not far from isotropy. On the other hand the 
new transport equation establishes a connection between the second harmonics and 
the cosmic ray flow. It will turn out that, like the cosmic ray flow, the quadrupole 
moment of the distribution can also be divided into convective and diffusive terms. 

2.1. Moments of the cosmic ray distribution 

When investigating cosmic ray distribution, one starts from the statistical Boltzmann 
equation 

where f ( x i , p i ,  r) is the distribution function and x i  and p i  ( i  = 1.2,3) represent the 
coordinates and components of momentum respectively. The electromagnetic Lorentz 
force is responsible for pi while the right-hand side term accounts for the change of f  due 
to scattering in the irregular magnetic field. Double indices indicate sums throughout 
the paper. 

In order to obtain moments of the Boltzmann equation, the method developed 
by Gleeson and Axford (1967) is used but also the second harmonics of the distribution 
are included, ie f i s  assumed to be of the form 

(2) 
where f ( O ) , f ( ' )  and f ' 2 '  are scalar, vector and tensor respectively. f ( O ) , f ( l )  and f") are 

f ( x i  9 pi 9 t) = f'"(xi 9 P, t )  +f' ' ) (x i  9 P ,  tk + ef"'(Xi 3 P ,  t)e 



Spherical harmonics of the cosmic ray angular distribution 1351 

independent of the direction of the momentum, the dependence on which appears in 
the unit vector, e, pointing in the momentum's direction. In order to avoid ambiguities 
f") is defined to be symmetric and traceless. Obviously an antisymmetric term would 
give no contribution to6 On the other hand the contribution of a unit tensor is direction- 
independent so it can be absorbed into !('). The expansion used here is identical to  that 
in spherical harmonics which is successfully applied for nearly isotropic distribution. 
The components off") andf") are uniquely related to spherical harmonics of the first 
and second order respectively. The tensor f") has five independent components 
corresponding to the five spherical harmonics of second order. 

The usual particle number density U and net flux S can easily be obtained by using 
the form of the distribution function (equation (2)) and integrating over the direction of 
the momentum : 

U ( x i ,  p ,  t )  = fp' dQ = 4~pZf'O' s 
P 

S j ( x i ,  p ,  t )  = uj  fp' dR = $ n p 2 u f j t '  J 
whereJ dQ represents integration over the direction ofthe momentum and U is the particle 
velocity. 

In an analogous way let us define a symmetric traceless Q j k  as 

Qjk may be referred to as the quadrupole moment of the cosmic ray distribution. 
Obviously the semi-diurnal variation is connected with Q j k  . 

2.2. Scattering mean free paths 

The collision term on the right-hand side of the Boltzmann equation can be evaluated 
using the method developed by Gleeson and Axford (1967). First, a Lorentz trans- 
formation leading into the frame moving with the solar wind is carried out ; then, after 
having considered the effect of an inelastic scattering of cosmic ray particles on magnetic 
field inhomogeneities carried by the solar wind, results are transformed back into the 
fixed frame. In the convection4iffusion model a relaxation time approximation is used, 
ie scattering is characterized by a mean free path I I  travelled by particles until scattering 
becomes isotropic. Here we adopt a model of subsequent independent scatterings. 
Having travelled a mean distance, I, particles are deflected with an angle $. The scattering 
need not be isotropic but it is described with a deflection angle distribution a($), ie the 
scattering process is absorbed into o($). Then it is found that rates at which the first 
and second harmonics of the anisotropy decay may be different. The calculation yields 
the mean free paths : 

1 
- = f Jeff g1 -cos $)a($) sin $ d$ (4a) 
21 
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where i1 and Lz are the mean free paths belonging to the first and second harmonics of 
the anisotropy respectively. 

In the real physical case diffusion cannot be treated as the result of subsequent 
separate scatterings, but the power spectrum of the irregular magnetic field is of im- 
portance (Jokipii 1966, Quenby 1973). Yet formulae (4a, b) remain applicable at high 
rigidities where the deflection in a coherent region of the irregular field is small. In this 
case 1 and I,+ become the mean size of a coherent region and the deflection of particles 
from their ideal unperturbed trajectories in that region respectively. 

It can easily be seen that 1, = 1, = 1 for isotropic scattering (ie o($) = constant). At 
high rigidities, however, a($) is expected to be strongly peaked at I,+ = 0. In this case 
it follows that 

(1 +cos I,+) (1 -cos I,+) 3 
o($) sin I,+ dI,+ 2 - 

1 
E. , 2 i. 1 

since 1 +cos (I 2: 2 can be taken in the integral. This result implies that higher har- 
monics describing smaller details of the distribution decay faster. 

2.3. Transport equations 

At this stage our aim is to obtain equations connecting the quantities U ,  S and Q. To 
achieve this the moments of the Boltzmann equation (1) are to be considered. In 
investigating steady-state conditions, time derivatives can be ignored ; furthermore, 
because of the high conductivity of the solar wind plasma, 

can be substituted where Y is the solar wind velocity and E and B are the electric and 
magnetic field strengths respectively. Then assuming nearly isotropic distribution (ie 
f(') >> If(')/, lf(2)1) and neglecting higher-order terms of V/u,  calculation yields the 
equations 

i?S, v, a s 
sxr 3 Px, d p  - - (UP)  

L( ai, +%isrBs) [ s, +; $( ;) Y ]  = -g SU 
U2 1 P C  

where Z e  is the electric charge of the particle and Ei jk  represents the antisymmetric unit 
tensor. 
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I t  can be seen that equations (7a, b )  are equivalent to the usual convection-diffusion 
equations. 

is the inverse diffusion tensor and 

gives the convective streaming. S can be explicitly expressed from equation (7b) and 
is found to consist of convective and diffusive terms. The situation is closely analogous 
in the case of equation (7c), as will be presently shown. For in a shorthand notation 
equation (7c) can be written as 

where 

On the basis of (8), 

D & J r q  ; (9) Q ,  - Q!cOnv)- 
i k  - ik 

Qlionv) is connected with solar wind velocity and arises as a result of the motion of the 
scattering media; thus it may be regarded as being the convective part of Q i k .  On the 
other hand the second term on the right-hand side of (9) may be called diffusive since it is 
produced by gradients of the cosmic ray particle density and current density. The tensor 
D;dr containing the mean free path ,I2 corresponds to the diffusion tensor. 

The reference system appropriate for inverting Dibr is chosen so that the x axis points 
in the direction of the magnetic field, and the y and z axes are perpendicular to the x axis 
and to each other too. Then calculation yields 

conv)  -5 
Q x x  = Q!, J x x  
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where K = Ze12/pc = &/R, R being the gyroradius in the large-scale magnetic field. 
These results show that, as in the case of diffusive streaming, the diffusion is unaffected 
by the magnetic field in the direction of the field and is restricted in perpendicular 
directions. 

terms resulting in effects of the order of (Vju)? cannot be observed experimentally. 
Ignoring such terms equation (7c)  reduces to 

Since the solar wind velocity is small with respect to particle velocities (V/u  c= 

(1 lb) 

3. Second harmonics of the free space anisotropy 

Inspection of equations ( l la ,  b) shows that second harmonics of the anisotropy are 
produced by spacial gradients of the cosmic ray flow. In this section the co-rotation, the 
most dominant of the cosmic ray streamings, will be investigated and found to  give rise 
to negligible semi-diurnal variation. The co-rotation apart, additional cosmic ray flows 
arise as a result of the solar zenith angle density gradient. These flows will turn out to 
produce the second harmonics of the cosmic ray anisotropy. 

3.1. The  effect of co-rotation 

I t  has been shown by several authors (Parker 1964, for second-order effects see Somogyi 
1972) that the rotating interplanetary magnetic field gives rise to a rigid co-rotation of 
cosmic radiation. Thus the co-rotational stream is 

where p is the negative exponent of the cosmic ray energy spectrum, Cl is the angular 
velocity vector of the sun and r is the radial vector pointing to the earth from the sun 
(,'Or 2: 400 km s-'). Substituting equation (12) into equation (1 lb), we arrive at 

which gives rise to a semi-diurnal amplitude of the order of (Vlu)'. Thus co-rotation 
produces no observable semi-diurnal variation. 

3.2. The  effect of zenith angle density gradient 

At higher heliolatitudes particles travel shorter distances along the bent interplanetary 
magnetic field lines so that a solar zenith angle density gradient is produced (Quenby 
and Lietti 1968). Here, and in what follows, it is assumed that the regular spiralling 
motion of particles is dominant with respect to the diffusion, ie R << ,2., R being the 
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gyroradius. The zenith angle density gradient will produce two kinds of cosmic ray 
streaming (Parker 1965). 

(i) Particle streaming perpendicular both to the density gradient and the inter- 
planetary magnetic field. This streaming is connected with the regular spiralling motion 
and its magnitude is 

R~ au 
3r d e '  
-- 

where 8 is the zenith angle and r is the distance from the sun. 

a magnitude of 
(ii) In the direction opposite to the density gradient a diffusive stream will flow with 

R 2 v  ?U 
311r d e '  
-- 

(iii) Quenby and Hashim (1969) have pointed out that cosmic ray flow of type (ii) 
is directed toward the ecliptic plane both below and above the plane (provided that the 
ecliptic plane is the plane of symmetry); thus conservation of the number of particles 
demands an outward flow along the magnetic field lines, the magnitude of which is given 
bv 

where I) is the garden hose angle (I) = 45" at the orbit of the earth) and q is a numerical 
factor that is determined by the dependence of the mean free path I , ,  on the distance 
from the sun. Assuming I x r8, 

1 x 4 - P  

q = J0 I d X  

(we note that q = 0.12 for p = 0 and q = 0.22 for p = 2). 
The first two of the three cosmic ray streams mentioned above actually vanish in the 

plane of symmetry, yet they have an important role in generating second harmonics. 
The reference system appropriate to the calculations is chosen so that the x axis 

points in the direction of the interplanetary field, the z axis points in the zenith angle 
direction and the y axis is perpendicular to the x and z axes (see figure 1). 

Rotational a x i s  

Figure 1. The reference system used in calculations. Magnetic field lines are wound on a 
cone around the rotational axis of the sun. Axis x is chosen to point along the field lines, 
axis y lies in the surface of the cone perpendicularly to field lines, while axis z points in the 
zenith angle direction normal to the surface of the cone. 



1356 J Kota 

Obviously the second harmonics of the cosmic ray anisotropy are given by the ratio 
of elements off") to  f"'  (see equation (2)). Using equations (IOU-f), (1 la, b)  and con- 
sidering the three cosmic ray streamings mentioned above, calculation yields 

i,, R 2  1 d2U . 2-sin2$3Si, 
f ' 0 '  2v2u 2r2 U de2 r c.U - -2,---+/t2 f if,' A = __ - lsQXx - 

where SiI is the cosmic ray stream in the direction of the magnetic field (see equation (14)). 
Terms containing Sl l  arise as a result of the divergence of interplanetary magnetic field 
lines while terms in C and D containing no IL2/,J., are produced by a stream of type (i). 
Obviously positive A ,  C and D values result in intensity maxima from the x, y and z 
directions respectively. 

At high rigidities i2 = fil can be taken (see equation (5 ) ) .  Furthermore, assuming 
iL K r2, ie = 2, the results (15a-f) reduce to 

( 16c) 

B = E = F = 0. (164 

In order to compare the present results with those of Quenby and Lietti (1968) we 
note that their results can be rewritten in the tensor form used here as 

R 2  1 C2U 
2r2 U ?e2 C - A  = - - ~ 

D - A = O  

B = E = F = 0. 

Comparing the results (16a-d) and (17a-c), it can be seen that (with minor differences) 
the results of the two models are basically in agreement. 
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Nagashima er a1 (1971) have suggested that the observed second harmonics of the 
free space anisotropy could be interpreted as a pitch angle distribution around the 
interplanetary field. In tensor form this means 

C = D  

B = E = F = 0. 

Inspection of equations (15a-f) shows that this could be the case if equation (14) did 
not hold, but to the contrary, a sunward streaming existed along the magnetic field 
lines. The existence of such a sunward streaming has been suggested recently by Dyer 
et a/ (1973). (Although comparison of (15c) and (15d) shows that C cannot be exactly 
equal to D, C = D can hold approximately if the term containing Sll is dominant.) 

4. Diurnal and semi-diurnal variations 

Due to the rotation of the earth the anisotropic free space cosmic ray angular distribution 
manifests itself in intensity variations in earth-based measurements. Variations caused 
by the second harmonics of free space anisotropy will be investigated in this section. 
Here we consider free space variations only and atmospheric and geomagnetic effects 
will not be taken into account. Variations resulting from the first harmonics of the 
anisotropy are given elsewhere (cf Somogyi 1972) and will be disregarded here. 

When calculating numerical results the figures given by Quenby and Lietti (1968) 
will be adopted, ie 

= 0.001 P "/, 
R 2  1 Z2U 
2r2 Li 2%' 

at the orbit of the earth where P is the rigidity (in GV), I(I = 45", and ,Il a r2 (ie = 2 
and q = 0.22) will be assumed (see equation (14)). As high rigidities are of interest 
i2/iL, = 3 will be taken (see equation (5)). 

The following notations will be used : 
x the declination of the axis of the earth ( x  = 23.5") 
A geographical latitude of the asymptotic arrival direction of cosmic ray particles 

observed 
t solar time: t = 0 at midnight and t = 180" at noon 
x time defined by the position of the earth in its orbit: a = 0 on 21 December and 

x = 360" in a year 

4.1. Annual and semi-annual variations 

Because of the 23.5" declination of the axis of the earth, the second harmonics of the 
cosmic ray anisotropy cause a semi-annual variation. Calculation gives 

A J / J  = -sin x cos x(  1 - 3 sin2A)[E cos(a - $) - F sin(a - $)I 
- sin2x[( 1 - 3 sin2A)/2] [&A - C) cos 2(a - $)- B sin 2(a - $)I. (19) 

Using equations (16a-d) at the equator at 20 GV rigidity the annual variation turns 
out to be non-existent ( E  = F = 0), while a semi-annual variation of amplitude about 
0.18 x is to be expected with intensity maxima on 5 May and 5 November. 
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4.2. Diurnal variation 

Transforming the second harmonics of the free space anisotropy into geographical 
coordinates, a diurnal variation is obtained : 

A J / J  = s i n A c o s A { ( A + C - 2 D ) s i n ~ c o s ~ c o s ( r + ~ )  

+ sin x[( 1 +cos x)/2] [ ( A  - C) COS([ - a + 2$) + 2 8  sin(t - a + 2$)] 

-sin x[(1 -cos ~)/2][(A-C)cos( t+3a-21/ / ) -2Bsin( t+3a-2$)]  

+ (2 cos x - 1)( 1 +cos x ) [ E  cos(t + $) + F sin(t + $)] 

- (2 COS x + 1)( 1 - cos x )  [ E  cos(t + 2a - $) - F sin([ + 2a - $)I}. (20) 

Combining this with results (16a-d), the amplitude of the diurnal variation turns out 
to have annual modulation with maximal amplitude being 0.8 x at A = 45" and 
P = 20 GV. Figure 2 shows the diurnal harmonics dial for the present results and for 
those of Quenby and Lietti (1968). The results obtained from the two models are 
slightly different. 

(01 ( b )  

Figure 2. Annual change of the expected harmonic dial of diurnal variation caused by the 
second harmonics of cosmic ray anisotropy for (a) the model of Quenby and Lietti and 
(b)  present calculations. A = 45" and P = 20 GV are chosen. Numbers indicate months 
and days. 

4.3. Semi-diurnal variation 

The second harmonics of the free space anisotropy result in a semi-diurnal variation of 

AJ/J  = icos2A{[(1 +cos x)/2]2[(A-C)cos 2(r+$)+2Bsin 2(t+$)] 

-a sinZX(A + C - 20) cos 2(t+a) 

- [( 1 -cos x)/2I2[(A - C)cos 2(t + 2a - $)- 2B sin 2(t + 2a - $)] 

- sin x( 1 + cos x )  [ E  cos(2t + a + $) + F sin(2t + U +  $)I 
+ sin x( 1 - cos x )  [ E  cos(2t + 3a - $) - F sin(2t + 3a - $)I}. (21) 

Inspection of this result shows that each of the five independent components of the 
quadrupole moment of the cosmic ray directional distribution manifests itself in semi- 
diurnal variation. Because of their different seasonal variations, in principle at least, it is 
possible to determine them separately. 
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Using the results of equations (16a-d), the semi-diurnal variation turns out to be 
nearly constant with times of intensity maxima at about 3 hr and 15 hr local solar time. 
This result is in agreement both with the prediction of the model of Quenby and Lietti 
(1968) and with most of the experimental results (cf Rao and Agrawal 1970, Kargathra 
and Sarabhai 1971, Dutt et al 1973). The amplitude of the semi-diurnal variation in the 
present model has a small (1 10%) semi-annual variation. The results obtained from 
the present model and from those of Quenby and Lietti are shown in figure 3. The 
discrepancy between the two models again turns out to be rather small. 

Figure 3. Expected harmonic dial of semi-diurnal variation (A = o", P = 20 GV) for (a) the 
model of Quenby and Lietti and ( b )  present calculations. The semi-diurnal amplitude has 
a slight semi-annual variation with maximal values on 5 February and 6 August. 

5. Conclusions 

In order to describe the semi-diurnal variation the convection4iffusion theory has been 
extended by considering the second moments of the cosmic ray angular distribution 
and those of the statistical Boltzmann equation. The quadrupole moment of the di- 
rectional distribution has been represented by a symmetric traceless tensor (equation (2)) 
whose elements correspond to the five independent spherical harmonics of second order. 
The main features of the calculation can be summarized as follows. 

(i) Different A l  and A 2  mean free paths belong to the first and second harmonics of 
the anisotropy, ie the rates at which different harmonics decay may be different. The 
quadrupole moment of the cosmic ray angular distribution turns out to depend on the 
A 2 / A I  ratio (see equations (15a-f )). At high rigidities i2 = 3 i 1  is to be expected (equation 
( 5 ) ) .  At low rigidities, however, the quadrupole moment of the anisotropy may provide 
information on the ratio of the two mean free paths, ie on the nature of the magnetic 
field irregularities by which the particles are scattered. 

(ii) The present results are basically in agreement with those of Quenby and Lietti 
(1968), although quantitative predictions may differ by 10-20 %. There are two marked 
differences as well : 

(a) By contrast with Quenby's model, different particle fluxes are predicted from the 
directions along the magnetic field and normal to the ecliptic plane respectively. 
This basically implies the fact that the mean square distance from the ecliptic 
plane is larger for particles arriving from the latter direction. 
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(b) Since the interplanetary magnetic field lines are bent and diverging, the second 
harmonics of the anisotropy depend on the global feature of the mean free path 
A I  between the sun and the earth (see factor q in equations (14), (151-f)). 

(iii) Provided that cosmic ray density depends on heliolatitude it can readily be 
seen that the cosmic ray angular distribution does depend on directions perpendicular 
to the magnetic field (ie D # C,  see equations (15c, d)). C = D should hold if the cosmic 
angular distribution were dependent on the pitch angle only. The pitch angle distribu- 
tion is a good approximation if the terms produced by the streaming along the magnetic 
field are dominant, ie a consfderable sunward streaming exists. In  fact there is some 
indication in favour of such an inward streaming along the magnetic field (Dyer et a1 
1973). 
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